

Draft Recommendation for
Space Data System Standards

THE DATA DESCRIPTION
LANGUAGE EAST
SPECIFICATION

(CCSD0010)

DRAFT RECOMMENDED STANDARD

CCSDS 644.0-P-2.1

PINK SHEETS
February 2007

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-7 November 2000February 2007

3.2 LOGICAL DESCRIPTION

The logical part of an EAST DDR is composed of:

– the logical description of the models of data (using type and subtype declarations for
the syntactic definition of the data, and using representation clauses for the
specification of their size in bits and their location within the set of data);

– the declaration of the data occurrences, i.e., the declaration of the described data
items (using object declarations).

The logical part of the Data Description Record consists of a package. This unit is
introduced by the keyword package, followed by the package name, and ends with ‘end
package name;’. The package name is an identifier (see 3.1.3).

The logical description package identification must be followed by the mention of the
version of the EAST recommendation to which the description is supposed to conform.

As the notion of EAST recommendation version was not present in the first two EAST
recommendation issues, the absence of the mention in a description should be interpreted as
a reference to these two first versions (fully compatible).

A description that conforms to a particular version of the EAST recommendation must
remain correct with regard to the following versions of EAST.

If an EAST description is generated using a tool, it is recommended that the tool indicate its
own version using a comment.

Types are models, and objects are instances (or occurrences) of these models. Type
declarations describe therefore the structure of the data elements which may occur in the
described data, while the actual data occurrences are represented by the declaration of
variables and constants.

A type (except predefined type), a subtype or a constant (except predefined constant) must be
declared in the package before being used.

The declaration of variables must occur in the latter section of the logical description.
Constants may be declared in the type declaration section or in the section for the declaration
of variables: in the first section, they contribute to data models definition, while they
represent data occurrences in the second section.

The described data is a concatenation of elements in the order of the corresponding variables.
The types used in the declaration of variables must have been previously declared in the
package.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-8 November 2000February 2007

Figure 3-13 summarizes the content of the logical part of a DDR.

package logical_package_name is

 EAST version and -- tool version (optional)

 Section for the Declaration of Types: Definition of the Data Models

 - type declarations and representation clauses (see 3.2.1 and 3.2.4)
- subtype and constant declarations (see 3.2.2 and 3.2.3.2)

 Section for the Declaration of Variables: Definition of the Data Occurrences

 - variable and constant declarations (see 3.2.3.1 and 3.2.3.2)
- actual values of discriminant (see 3.2.1.6)

end logical_package_name ;

Figure 3-13: Logical Part Structure

The version declaration should respect the following format:

east_version : constant STRING := "3.0";

-- tool version : OASIS 5.0 (optional comment)

3.2.1 TYPE DECLARATIONS

The type is characterized by a set of permissible values. Several classes of types exist:
scalar types (enumeration types, integer types, and real types), array types, and record types.
Some types are EAST predefined types (see 3.2.1.1); the other types are user defined types
and must be declared according to a specific syntax (see 3.2.1.2, 3.2.1.3, 3.2.1.4, 3.2.1.5 and
3.2.1.6).

3.2.1.1 Predefined Types

There are three predefined types provided by the EAST language: CHARACTER, STRING
and EOF. Predefined means that no previous declaration has to be made explicitly by the
user to use one of these types.

The predefined type CHARACTER is an enumeration type (see next subsection for the
enumeration definition syntax rules), whose values are the 256 characters of the 8-bit coded
Latin Alphabet No. 1. character set (see annex B and reference [1]).

The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, indexed by values in increments of one of any positive integer type.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-13 November 2000February 2007

An index is specified as follows in figure 3-19:

::=

. .

< >

Specification

Index

Discrete Type
Identifier range

Constant
Identifier

Discrete

Enumeration
Literal

Constant
Identifier

Discrete

Enumeration
Literal

o

Index
Specification

Discrete type
Identifier

Discrete
Constant
Identifier

Discrete
Constant
Identifier

Enumeration
Literal

Integer
Literal

Integer
Literal

Enumeration
Literal

. .

range <>

::=

Figure 3-19: Index Specification Diagram

In the ‘..’ notation, the first identifier or literal specifies the lower bound, while the second
one specifies the upper bound.

The ‘range <>’ expression denotes an undetermined number of elements.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-16 November 2000February 2007

where a component declaration is specified as in figure 3-21:

::= ;:Component
Declaration

Component
Identifier

Type
Identifier

Index
Constraint

Constant
Declaration

o

:Component
Declaration ::= Component

Identifier
Type

Identifier
Index

Constraint

:= Default
Value

; Constant
Declaration

Figure 3-21: Component Declaration Diagram

The optional default value is the one to be given automatically if no other value is given by
an application generating such data; it is to be used by generic software layer.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-17 November 2000February 2007

Figure 3-22 illustrates default value definitions.

::=

::=

::=Default
Value

Array
Value

Elementary
Value

Array
Value

String
Literal

Integer
Literal

Elementary
Value

Real
Literal

Enumeration
literal

Constant
Identifier

::=

Mono-dimension
Array
Value

Multi-dimension
Array
Value

Multi-dimension
Array
Value

Mono-dimension
Array
Value

(others => Array
Value

)

(others => Elementary
Value

)::=

::=

Figure 3-22: Default Value Definition Diagram

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-19 November 2000February 2007

::=

. .

,

Constraint
Index

Constant
Identifier

Discrete

Enumeration
Literal

Discrete Type or Subtype
Identifier

Constant
Identifier

Discrete

Enumeration
Literal

()

Index
Constraint

Discrete type or Subtype
Identifier

Discrete
Constant
Identifier

Discrete
Constant
Identifier

Enumeration
Literal

Integer
Literal

Integer
Literal

Enumeration
Literal

. .

,

(::=

)

Figure 3-23: Index Constraint Diagram

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-20 November 2000February 2007

The following example presents two record type definitions that consist only of simple
component declarations:

type COMPLEX is record
 REAL_PART: REAL;
 IMAGINARY_PART: REAL;
end record;
-- REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
type MEASUREMENT_BLOCK is record
 TODAY: DAY := MON;
 TEMPERATURE: SMALL_INTEGER := 0;
 VOLUME: SMALL_INTEGER := 0;
 FIRST_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 .. 100) := (others => 1);
 SECOND_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 ..10) := (others => 1);
end record;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
-- SMALL_INTEGER is an integer type defined in 3.2.1.3 as:
-- type SMALL_INTEGER is range -10 .. 10;
-- VECTOR is an array type defined in 3.2.1.5 as:
-- type VECTOR is array (NUMBER range <>) of REAL;

Example 3-8: Record Type Definitions

Some records may contain components of which the size or even the existence depends on
the value of another component, called a discriminant. The type of a discriminant must be
discrete. Figure 3-24 illustrates the syntax of a discriminant specification.

::= ():

;

Specification
Discriminant Discriminant

Identifier
Type

Identifier

Default
Value

:= o

Figure 3-24: Discriminant Specification Diagram

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-26 November 2000February 2007

.../...

-- structuring types
type DATA_ARRAY is array (NUMBER range <>) of OCTET;
type SECONDARY_HEADER_TYPE is array (1 .. 4) of OCTET;

type PRIMARY_HEADER_TYPE is record
 PACKET_IDENTIFICATION: PACKET_IDENTIFICATION_TYPE;
 PACKET_SEQUENCE_CONTROL: PACKET_SEQUENCE_CONTROL_TYPE;
 SOURCE_DATA_LENGTH: NUMBER;
end record;

type PACKET_FORMAT_TYPE(
 VIRTUAL_SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT;
 -- point to the secondary header flag located in the first branch
 VIRTUAL_SOURCE_DATA_LENGTH: NUMBER := 256)
 -- point to the source data length located in the third branch
is record
 PRIMARY_HEADER: PRIMARY_HEADER_TYPE;
 case VIRTUAL_SECONDARY_HEADER_FLAG is
 when ABSENT =>
SOURCE_DATA_0: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);
 when PRESENT =>
 SECONDARY_HEADER: SECONDARY_HEADER_TYPE;
SOURCE_DATA_1: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);
 end case;
end record;

FLAG : PRESENCE_FLAG;
LENGTH : NUMBER;
PACKET : PACKET_FORMAT_TYPE;
-- Actual values of discriminants
PACKET.VIRTUAL_SECONDARY_HEADER_FLAG : virtual PRESENCE_FLAG := FLAG;
PACKET.VIRTUAL_SOURCE_DATA_LENGTH : virtual NUMBER := LENGTH;

Example 3-11: Logical Description of the Packet Format

The two virtual discriminants ‘VIRTUAL_SECONDARY_HEADER_FLAG’ and
‘VIRTUAL_SOURCE_DATA_LENGTH’ do not really exist in the exchanged data block.
They serve as a link between other data:

– VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the
SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block;
it conditions the existence of the SECONDARY_HEADER block. It serves as a link
between these two fields.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-27 November 2000February 2007

– VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the
SOURCE_DATA_LENGTH field in the PRIMARY HEADER; it conditions the size
of the SOURCE DATA block. It also serves as a link.

If the size of an array is deduced from several discriminants by a calculation its virtual size
declaration remains unchanged (as shown on example 3-10). The calculation to be done is
described later after the object declaration section (see 3.2.3) as shown in example 3-12.

type A_JULIAN_DAY is range 1 .. (2**32)-1;
type A_SECOND_IN_A_DAY is range 0 .. 86399;

type A_JULIAN_DATE is record
 DAY : A_JULIAN_DAY;
 SECOND : A_SECOND_IN_A_DAY;
end record;

type A_TEMPERATURE is digit 6 range 0.0 .. 100.0;

type TEMPERATURES is array (A_JULIAN_DAY range <>) of A_TEMPERATURE;

type DATA_RECORD (VIRTUAL_SIZE : A_JULIAN_DAY := 1) is record
 MEASUREMENTS : TEMPERATURES (1 .. VIRTUAL_SIZE);
end record;

FIRST_DATE : A_JULIAN_DATE;
LAST_DATE : A_JULIAN_DATE;
DATA : DATA_RECORD;
-- Actual values of discriminant
DATA.VIRTUAL_SIZE : virtual DAY_TYPE := LAST_DATE.DAY -
FIRST_DATE.DAY;

Example 3-12: Calculated Size Array

Supported operators are ‘+’, ‘-’, ‘*’, ‘/’, ‘**’ (exponent), ‘is_odd’, ‘is_even’, ‘cos’, ‘sin’,
‘tan’, ‘acos’, ‘asin’, ‘atan’, ‘log’, ‘ln’, ‘cosh’, ‘sinh’, ‘tanh’, ‘acosh’, ‘asinh’, ‘atanh’, ‘(’, ‘)’,
‘!’ (factorial).

The syntax of the virtual declaration for a calculated contition is the same (as in example 3-9).

The calculation to be done is described later after the object declaration section.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-28 November 2000February 2007

type A_RESULT is range 0 .. 100;

type RESULTS (VIRTUAL_BONUS_FLAG : BOOLEAN := TRUE) is record
 RESULT_1 : A_RESULT;
 RESULT_2 : A_RESULT;
 case VIRTUAL_BONUS_FLAG is
 when TRUE => BONUS : A_RESULT;
 end case;
end record;

PREVIOUS_WEEK : A_RESULT;
THIS_WEEK : RESULTS;

-- Actual values of discriminant

THIS_WEEK.VIRTUAL_BONUS_FLAG : virtual BOOLEAN
 := (THIS_WEEK.RESULT_2 - THIS_WEEK.RESULT_1) > PREVIOUS_WEEK;

Example 3-13: Calculated Component Presence Condition

::=
Actual

Discriminant
Value

EAST path : Type
Identifier Function:= ;

NOTES

1 Function returns a value compliant with type identifier computed using predefined
operators applied to values designated by their complete EAS T path.

2 The EAST path is built using the name of each hierarchy level from the top to the
designated item.

Figure 3-27: Actual Discriminant Value Declaration Diagram

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-33 November 2000February 2007

3.2.3 OBJECT DECLARATIONS

An object is an entity that contains a value of a given type. A declared object is called a
constant if the reserved word constant appears in the object declaration. An object that is
not a constant is called a variable.

3.2.3.1 Declaration of Variables

The declaration of a variable uses the previous type, subtype, or constant declarations.
Variables correspond to the data that are to be exchanged. Figure 3-33 illustrates the syntax
for the declaration of a variable.

::= ;:
Variable

Declaration
Variable
Identifier

Type
Identifier

::=
Variable

Declaration
Variable
Identifier

: Type
Identifier

Default
Value

:= ;

Figure 3-33: Variable Declaration Diagram

The default value (which definition is given by figure 3-22) is the one to be given
automatically if no other value is given by an application generating such data; it is to be
used by generic software layer.

A variable declaration consists of only one identifier (the variable identifier) followed by the
identifier of the type that describes the corresponding data.

 UPDATED_DATA: MEASUREMENT_BLOCK ;
 -- MEASUREMENT_BLOCK is a record type defined in 3.2.1.6
 INSTRUMENT_STATUS : STATE := ON;
 -- STATE is an enumeration type defined in 3.2.1.2:
 -- ON is a default value

Example 3-16: Variable Declaration

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-44 November 2000February 2007

The following example (figure 3-40) presents the case of an incomplete record representation
clause. A fortiori no representation clause could be found after a computed size array or a
computed structure record.

Day

(8 bits)

Year
(16 bits)

Month

(8 bits)

Number

(8 bits)

Second Record

Vector (1 .. Number)
(?)

Figure 3-40: Second Tree Structure

The number of measurements is not known at definition time. The size of the vector of
measurements is therefore not provided. The tree structure is described using the following
declarations:

type SECOND_RECORD(THE_NUMBER: NUMBER := 1) is record
 THE_YEAR: YEAR;
 THE_MEASUREMENT: VECTOR(1 .. THE_NUMBER);
 THE_MONTH: MONTH;
 THE_DAY_OF_MONTH: DAY;
end record;
for SECOND_RECORD use record
 THE_NUMBER at 0 range 0 .. 7;
 THE_YEAR at 0 range 8 .. 23;
 -- no component clause for THE_MEASUREMENT,
 -- for THE_MONTH nor for THE_DAY_OF_MONTH
end record;
-- no length clause for SECOND_RECORD type

Example 3-27: Incomplete Record Representation Clause Declaration

In this example, the length of ‘THE_MEASUREMENT’ depends on the value of the
discriminant ‘THE_NUMBER’. No representation clause can be given for it. Nevertheless the
size is determined by the expression ‘THE_NUMBER times 32’, 32 being the size of the basic
element VALUE. The component ‘THE_MEASUREMENT’ begins at bit 24. The length of
‘THE_MONTH’ is known but its location is not known at definition time. No representation
clause can be given for it. The component ‘THE_MONTH’ begins after the end of
‘THE_MEASUREMENT’. In the same way, the length of ‘the_day_of_month’ is known, but
its location is not known at definition time. No representation clause can be given for it. The
component ‘THE_DAY_OF_MONTH’ begins after the end of ‘THE_MONTH’.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 3-56 November 2000February 2007

The actual representation of the numerics is given by the declaration of constants of the
previous record types (INTEGER_PHYSICAL_DESCRIPTION for the representation of
integers and REAL_PHYSICAL_DESCRIPTION for the representation of reals).

The actual representation of a numeric is therefore provided by a record value (i.e., the value
of the constant of the relevant record type: INTEGER_PHYSICAL_DESCRIPTION or
REAL_PHYSICAL_DESCRIPTION).

Figure 3-44 illustrates the syntax of a record value.

::=)

,

(= >
Record
Value Identifier

Component
Value

Component

Figure 3-44: Record Value Specification Diagram

In the case of the record types used in the physical part of an EAST description, the
component value is either an enumeration literal, an integer literal or an array value (see
figure 3-45).

Component
Value

Array
Value

Record
Value

Elementary
Value

::=

Figure 3-45: Component Value Definition Diagram

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page 4-1 November 2000February 2007

4 RESERVED KEYWORDS

The following reserved keywords are not available for use as declared identifiers. Some of
them are reserved keywords of the Ada programming language (see reference [E3]), but not
of the EAST language. These words are also reserved in order to avoid any problem in the
case of an Ada application accessing the data. Other words are reserved identifiers of the
EAST language and not of the Ada programming language.

a) EAST and Ada Keywords

 array digits is package type
 at
 end null range use
 case record
 constant for of when
 others subtype

b) Other Ada Keywords

 abort delta if pragma tagged
 abs do in private task
 abstract procedure terminate
 accept else limited protected then
 access elsif loop
 aliased entry raise until
 all exception mod rem
 and exit renames while
 new requeue with
 begin function not return
 body reverse xor
 generic or
 declare goto out select
 delay separate

c) Pure EAST reserved identifiers

 virtual_... word_32_bits word_16_bits east_version virtual

NOTE – Any identifier beginning with ‘virtual_’ is reserved for virtual component
identifier only.

DRAFT CCSDS RECOMMENDATION RECOMMENDED STANDARD FOR EAST SPECIFICATION

CCSDS 644.0-BP-2.1 Page D-2 November 2000February 2007

In Ada, a pragma is used to convey information to Ada compilers. As such, pragma use is
not justified in EAST.

D2 ADA SYNTAX ELEMENTS THAT HAVE A DIFFERENT MEANING IN EAST

A length clause is defined by the following declaration:

 for type_identifier'size use static_expression ;

In Ada, the value of the expression specifies an upper bound for the number of bits to be
allocated to objects of the given type. In EAST, the expression specifies the exact number of
bits that any object of the given type occupies.

In Ada, a record representation clause specifies the storage representation of records in
memory, that is, the order, position, and size of record components in memory of a given
machine. In EAST, the record representation clause specifies the actual storage
representation on the medium.

D3 EAST SYNTAX RESTRICTIONS VS. ADA

In Ada, the base for based numeric literals can be any number between 2 and 16. In EAST
the base can only be 2, 8 or 16.

In Ada the values specified in a range constraint within an integer or real type definition can
be a simple_expression. In EAST the values may only be a numeric literal or an identifier
naming an appropriate numeric constant.In EAST the values may only be a numeric literal or
an identifier (naming an appropriate numeric constant or an appropriate discriminant
eventually computed later, as described in 3.2.1.6).

In Ada, a constant declaration allows a list of identifiers. EAST allows only a single identifier.

